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Abstract 

Canonical Correlation Analysis (CCA) and Partial Least Squares (PLS) are powerful 

multivariate methods for capturing associations across two modalities of data (e.g., brain and 

behaviour). However, when the sample size is similar or smaller than the number of variables 

in the data, CCA and PLS models may overfit, i.e., find spurious associations that generalise 

poorly to new data. Dimensionality reduction and regularized extensions of CCA and PLS have 

been proposed to address this problem, yet most studies using these approaches have some 

limitations. 

This work gives a theoretical and practical introduction into the most common CCA/PLS 

models and their regularized variants. We examine the limitations of standard CCA and PLS 

when the sample size is similar or smaller than the number of variables. We discuss how 

dimensionality reduction and regularization techniques address this problem and explain their 

main advantages and disadvantages. We highlight crucial aspects of the CCA/PLS analysis 

framework, including optimising the hyperparameters of the model and testing the identified 

associations for statistical significance. We apply the described CCA/PLS models to simulated 

data and real data from the Human Connectome Project and the Alzheimer’s Disease 

Neuroimaging Initiative (both of n>500). We use both low and high dimensionality versions 

of each data (i.e., ratios between sample size and variables in the range of ~1-10 and ~0.1-0.01) 

to demonstrate the impact of data dimensionality on the models. Finally, we summarize the 

key lessons of the tutorial. 
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Introduction 

Neuroimaging datasets with sample sizes of n>1000 (e.g., UK Biobank, Human Connectome 

Project, Alzheimer’s Disease Neuroimaging Initiative) represent a unique opportunity to 

advance population neuroscience and mental health (1–3). These datasets comprise multiple 

data modalities (e.g., structural Magnetic Resonance Imaging (MRI), resting-state functional 

MRI, mental health, cognition, environmental factors and genetics), several of which can be 

high-dimensional, meaning there are hundreds or thousands of variables per subject. 

Understanding the links across these different modalities is fundamental for enabling new 

discoveries, however, analysing multimodal datasets with more variables than samples poses 

technical challenges. 

The most established methods to find associations across multiple modalities of multivariate 

data are Canonical Correlation Analysis (CCA) (4) and Partial Least Squares (PLS) (5). CCA 

and PLS have recently become very popular with numerous applications linking brain imaging 

to behaviour or genetics (e.g., (6–26)).  However, when the variables in at least one modality 

(e.g., brain) outnumber the sample size, standard CCA and PLS models may overfit, i.e., more 

likely to find spurious associations that generalize poorly to independent samples (see e.g., 

(26–28)). Moreover, there is no unique standard CCA solution when the number of variables 

exceeds the sample size. Two approaches have been proposed to address this problem: i) 

reducing the dimensionality of the data with Principal Component Analysis (PCA) 

(9,10,12,22,24,26); ii) using regularized extensions of CCA and PLS (11,20,23,27). Most 

studies using these approaches have potential limitations, however. For instance: i) they usually 

do not optimise the hyperparameters (e.g., number of principal components or amount of 

regularization) (9,10,12,15,22,24,26); ii) many studies do not test the significance of the 

associations using hold-out data (e.g., out-of-sample correlation) (7,9–11,22); iii) they often do 

not assess the stability of the CCA/PLS model (7,9,18,21–25). Finally, few studies compare 
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different CCA/PLS models and analytic frameworks across different datasets with different 

dimensionalities (see e.g., (25–27)). 

Several tutorial papers were recently published on CCA and PLS (29–32). Here, we 

complement these tutorials by discussing some important conceptual and practical aspects of 

these methods. These comprise: i) the advantages and disadvantages of the various CCA/PLS 

models, ii) the impact of PCA and regularization on these models (e.g., on overfitting and 

stability), and iii) the importance of the analytic framework in optimising the models’ 

hyperparameters and performing statistical inference. 

In Part 1, we present the theoretical background of these models and discuss the most common 

strategies to mitigate the problems caused when the ratio between sample size and number of 

variables is small (e.g., of around ~0.1-0.01). We also examine the most prevalent analytical 

frameworks used with CCA/PLS models. In Part 2, we apply the models introduced in Part 1 

to simulated data and real data from the Human Connectome Project (HCP) and the 

Alzheimer’s Disease Neuroimaging Initiative (ADNI) (n>500 in all). We illustrate how the 

different CCA/PLS models perform with data dimensionalities often used in practice (i.e., 

ratios between sample size and number of variables in the ranges of ~1-10 or ~0.1-0.01). 

Moreover, we show that regularization can be helpful even when the number of variables in 

both data modalities is smaller than the sample size. Mathematical details of the CCA/PLS 

models and their connections are provided in the Supplement. 
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Part 1: Technical background of CCA and PLS 

CCA/PLS optimization and nomenclature 

Canonical Correlation Analysis (CCA) (4) and Partial Least Squares (PLS) (5) are multivariate 

latent variable models that capture associations across two modalities of data (e.g., brain and 

behaviour). For example (Figure 1), 𝑿 contains voxel-level brain variables and 𝒀 contains 

behavioural variables from item-level self-report questionnaires (i.e., 𝑿 and 𝒀 are matrices with 

rows and columns representing subjects and variables, respectively). Standard CCA/PLS find 

pairs of brain and behavioural weights 𝒘𝑥 and 𝒘𝑦 (column vectors) such that the linear 

combination (weighted sum) of the brain and behavioural variables maximises the correlation 

(CCA) or covariance (PLS) between the resulting latent variables, i.e., between 𝝃 = 𝑿𝒘𝑥 and 

𝝎 = 𝒀𝒘𝑦, respectively. 

In the PLS literature, the weights are often referred to as saliences and the latent variables as 

scores. In the CCA literature, the weights are often referred to as canonical vectors, the latent 

variables as canonical variates, and the correlation between the latent variables as canonical 

correlations. The brain and behaviour weights have the same dimensionality as their respective 

data modality (e.g., number of brain/behavioural variables) and quantify each brain and 

behavioural variable’s contribution to the identified association. Sometimes the Pearson 

correlations between the brain and behavioural variables and their respective latent variable are 

presented instead of the model’s weights, and are called structure correlations (CCA) (33) or 

loadings (PLS) (34) (for details, see the Supplement). The latent variables (one latent variable 

score per data modality and subject) quantify how the associative effect is expressed across the 

sample. Table 1 summarizes the different nomenclatures used in the CCA and PLS literature.  

While standard CCA refers to a single method, standard PLS refers to a family of methods with 

different modelling aims (e.g., assuming a symmetric or asymmetric relationship between the 
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two data modalities; for details, see the Supplement). Standard CCA and PLS can be both 

solved by iterative (e.g., alternating least squares (35), non-linear iterative partial least squares 

(36)) and non-iterative (e.g., eigenvalue problem (29,34)) methods. In case of iterative 

methods, once a pair of weights is obtained, the corresponding associative effect is removed 

from the data (by a process called ‘deflation’) and new associations are sought. 

Since standard CCA maximises correlation between the latent variables, it is more sensitive to 

the direction of the relationships across modalities, and it is not driven by within-modality 

variances. On the other hand, standard PLS – which maximises covariance – is less sensitive 

to the direction of the across-modality relationships as it is also driven by within-modality 

variances. Formally, we can see this from the optimization of these models. Standard CCA 

optimizes correlation across modalities: 

𝑚𝑎𝑥𝒘𝑥,𝒘𝑦
𝑐𝑜𝑟𝑟(𝑿𝒘𝑥, 𝒀𝒘𝑦). (Eq. 1) 

Standard PLS optimizes covariance across modalities – the product of correlation and standard 

deviations (i.e., square root of variance): 

𝑚𝑎𝑥𝒘𝑥,𝒘𝑦
 𝑐𝑜𝑣(𝑿𝒘𝑥, 𝒀𝒘𝑦) = 𝑐𝑜𝑟𝑟(𝑿𝒘𝑥, 𝒀𝒘𝑦)√𝑣𝑎𝑟(𝑿𝒘𝑥)√𝑣𝑎𝑟(𝒀𝒘𝑦). (Eq. 2) 

This also means that standard CCA and PLS are equivalent optimization problems when 

𝑣𝑎𝑟(𝑿𝒘𝑥) = 𝑣𝑎𝑟(𝒀𝒘𝑦) = 1, which is true when the within-modality variances are identity 

matrices, i.e., 𝑿𝑇𝑿 = 𝒀𝑇𝒀 = 𝑰.  

Limitations of standard CCA/PLS 

When the ratio between the sample size and the number of variables is similar or smaller than 

1, standard CCA/PLS models present limitations. These limitations can exist irrespective of 

sample size if the number of variables is large, or the variables are highly correlated. In case of 

standard CCA the key limitations are: i) The optimization is ill-posed (i.e., there is no unique 

solution) when the number of variables in at least one of the modalities exceeds the sample 
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size; ii) The CCA weights 𝒘𝑥 and 𝒘𝑦 are unstable when the variables within one or both 

modalities are highly correlated, known as the multicollinearity problem (37). These 

limitations might sound familiar, not surprisingly, as standard CCA can be viewed as a 

multivariate extension of the univariate General Linear Model (38,39). The standard PLS 

optimization is never ill-posed and copes with multicollinearity (i.e., PLS weights are stable 

(36)), however, standard PLS and CCA cannot perform feature selection (i.e., setting the 

weights of some variables to 0) and may therefore have low performance where the effects are 

sparse.  

These limitations can be addressed by dimensionality reduction (i.e., PCA) or regularization. 

Regularization adds further constraints to the optimization to solve an ill-posed problem or 

prevent overfitting. For CCA/PLS models, the most common forms of regularization are L1-

norm (lasso) (40), L2-norm (ridge) (41) and combinations of L1-norm and L2-norm 

regularization (elastic-net) (42). 

Standard CCA with PCA dimensionality reduction (PCA-CCA) 

Principal Component Analysis (PCA) transforms one modality of multivariate data into 

uncorrelated principal components (PC) (it is also related to whitening, see ‘Effects of pre-

whitening on CCA/PLS models’). PCA is often used as a naïve dimensionality reduction 

technique, as PCs explaining little variance are assumed to be ‘noise’ and discarded, and the 

remaining PCs entered into standard CCA. However, PCA when applied before CCA can be 

also seen as a technique similar to regularization: it makes the CCA model well-posed and 

addresses the multicollinearity problem. 

The number of retained PCs can be selected based on their explained variance, e.g., 99% of 

total variance. In PCA-CCA applications, often the same number of PCs are chosen for both 

data modalities, based on the lower dimensional data – usually behaviour (e.g., (9,10,22,24)). 

Sometimes the same proportion of explained variance – rather than numbers of PCs – is used 
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for both data modalities (e.g., (12,26)). One problem with discarding PCs with low variance is 

that there is no guarantee that PCs with high variance in either modality are best to link the 

different data modalities, whilst some discarded PCs might contain useful information. To 

address this problem, we can use a data-driven approach, by selecting the number of PCs that 

maximise the correlation across modalities (see ‘CCA with dimensionality reduction vs. 

regularized CCA’ in Part 2). 

Regularized CCA (RCCA) 

L2-norm regularization is a popular form of regularization for ill-posed problems or for 

mitigating the effects of multicollinearity, originally used in ridge regression (41). In L2-norm 

regularization, the added constraint corresponds to the sum of squares of all weight values1, 

which forces the weights to be small but does not make them zero. L2-norm regularization has 

been proposed for CCA (43), commonly referred to as regularized CCA (RCCA) (34,44–46). 

Interestingly, in RCCA, the regularization terms added to the CCA problem leads to a mixture 

of standard CCA and standard PLS optimization. We can see this from the RCCA optimization 

problem: 

𝑚𝑎𝑥𝒘𝑥,𝒘𝑦
 

𝑐𝑜𝑟𝑟(𝑿𝒘𝑥,𝒀𝒘𝑦)√𝑣𝑎𝑟(𝑿𝒘𝑥)√𝑣𝑎𝑟(𝒀𝒘𝑦)

√(1−𝑐𝑥)𝑣𝑎𝑟(𝑿𝒘𝑥)+𝑐𝑥√(1−𝑐𝑦)𝑣𝑎𝑟(𝒀𝒘𝑦)+𝑐𝑦
. 

(Eq. 3) 

where the two hyperparameters (𝑐𝑥, 𝑐𝑦) control the amount of regularization and provide a 

smooth transition between standard CCA (𝑐𝑥 = 𝑐𝑦 = 0, not regularized) and standard PLS 

(𝑐𝑥 = 𝑐𝑦 = 1, most regularized) (34,44). Importantly, as L2-norm regularization mitigates 

multicollinearity it increases the stability of the RCCA weights. However, it also means that 

similar to standard PLS, RCCA can be driven by within-modality variances. For additional 

                                                 
1 L2-norm: ‖𝐰‖2 = ∑ 𝑤𝑖

2
𝑖  , where 𝐰 = (𝑤1, 𝑤2, … , 𝑤𝑛) is a vector of size 𝑛 
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connections between standard CCA, RCCA, standard PLS and how they are related to PCA-

CCA, see the Supplement. 

Sparse PLS (SPLS) 

L1-norm regularization was originally proposed in Lasso regression (40). In L1-norm 

regularization, the added constraint corresponds to the absolute sum of weight values2, which 

sets some of the weight values to zero resulting in variable selection and promoting sparsity.  

Sparse solutions facilitate the interpretability of the model and may improve performance when 

only a subset of variables is relevant (40). However, sparsity can also introduce instability to 

the model if different sets of variables provide similar performance. Elastic net regularization 

is a mixture of L1-norm and L2-norm regularization which combines the properties of both 

forms of regularization and can mitigate the instability of L1-norm regularization (42). In one 

popular algorithm (17), which we will refer to as sparse PLS (SPLS), hyperparameters control 

the amount of  L1-norm regularization or sparsity. Since PLS can be seen as CCA with maximal 

L2-norm regularization (see section before), SPLS can also be viewed as an elastic net 

regularized CCA (for details, see the Supplement).  

Effects of pre-whitening on CCA/PLS models 

In machine learning, data are often whitened as a pre-processing step. Whitening transforms 

the original variables into new, uncorrelated features, which are normalized to have unit length 

(i.e., L2-norm of each feature equals 1). Whitening is not a unique transformation and the most 

commonly used forms are PCA-, Mahalanobis- and Cholesky-whitening (55). The critical 

difference between PCA and PCA-whitening is that PCA retains the variance of the original 

data, i.e., the principal components are not normalized to have unit length. 

                                                 
2 L1-norm: ‖𝐰‖1 = ∑ |𝑤𝑖|𝑖 , where 𝐰 = (𝑤1, 𝑤2, … , 𝑤𝑛) is a vector of size 𝑛 
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Whitening as a pre-processing step has a major drawback in CCA/PLS models: the beneficial 

effects of L1-norm and L2-norm regularization on the original variables cannot be achieved 

any more as the whitened data are the new inputs of the model. In case of SPLS, L1-norm 

regularization will result in sparsity on the whitened variables (instead of the original variables) 

thus the interpretability of the results will not be facilitated. In case of RCCA, L2-norm 

regularization is not active on whitened data, which means that CCA, RCCA and PLS will 

yield the same results. For additional details on whitening, see the Supplement. 

Analytic frameworks for CCA/PLS models 

The statistical significance of the CCA/PLS model (i.e., the number of significant associative 

effects) can be evaluated using either a descriptive or a predictive (also referred to as a machine 

learning) framework. The two frameworks have distinct goals: the aim of the descriptive 

framework is to detect above-chance associations in the current dataset, whereas the aim of the 

predictive framework is to test whether such associations generalise to new data (56–59).  

In the descriptive framework (Figure 2A), CCA/PLS is fitted on the entire sample, thus the 

statistical inference is based on in-sample correlation. In this framework, there is usually no 

hyperparameter optimization (i.e., the number of PCs or regularization parameter is fixed a 

priori). In the predictive framework (Figure 2B), CCA/PLS is fitted on a training/optimization 

set and evaluated on a test/holdout set, thus the statistical inference is based on out-of-sample 

correlation. This procedure assesses the generalizability of the model, i.e., how well the 

association found in the training set generalizes to an independent test set. In the predictive 

framework, the hyperparameters are usually optimized, therefore the training/optimization set 

is further divided into a training and a validation set and the best hyperparameters are selected 

based on out-of-sample correlation in the validation set. In both descriptive and predictive 

frameworks, permutation inference (based on in-sample or out-of-sample correlation) is often 

used to assess the number of significant associative effects (59,60). 

Jo
urn

al 
Pre-

pro
of



11 

 

 

Lastly, an important component of any CCA/PLS framework is testing the stability of the 

model. Usually a bootstrapping procedure is applied to provide confidence intervals on the 

model’s weights (59). Recently, stability selection (19,20,61–63) has been proposed with the 

aim of selecting the most stable CCA/PLS model in the first place, rather than evaluating the 

stability of the model post-hoc. Alternatively, the stability of the CCA/PLS models can be 

measured as the average similarity of weights across different splits of training data, which 

avoids the additional computational costs of the previous two approaches (27). For more details 

on analytic frameworks, see e.g., (22,27,50,59). 

Part 2: Demonstrations of CCA and PLS analyses 

Description of experiments 

In order to demonstrate the properties of different CCA and PLS approaches, we applied the 

models introduced in Part 1 to real and simulated datasets with different dimensionalities and 

sample sizes. Table 2 gives an overview of all experiments. 

We chose the Human Connectome Project (HCP) and the Alzheimer’s Disease Neuroimaging 

Initiative (ADNI) datasets based on two recent landmark studies (22,50). In the HPC dataset, 

we used resting-state fMRI connectivity data (19 900 and 300 brain variables in the high- and 

low-dimensional data, respectively) and 145 non-imaging subject measures (e.g., behavioural, 

demographic, lifestyle measures) of 1003 healthy subjects. In the ADNI dataset, we used 

whole-brain grey matter volumes (168 130 and 120 brain variables in the high- and low-

dimensional data, respectively) and 31 item-level measures of the Mini-Mental State 

Examination (MMSE) of 592 elderly subjects. We generated the simulated data with a sparse 

signal (i.e., 10% of the variables in each modality were relevant to capture the association 

across modalities) and properties similar to the HCP dataset (in terms of sample size, 

dimensionality and correlation between latent variables). Table 3 displays the characteristics 
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of the real and simulated datasets. For further details of the datasets and the simulated data 

generation, see the Supplement.  

The PCA-CCA model was used both with fixed numbers of PCs within a descriptive 

framework and with optimized number of PCs within a predictive framework. All the other 

CCA/PLS models were used within a predictive framework. The predictive framework was 

based on (50), which uses multiple test/holdout sets to assess the generalizability and 

robustness of the CCA/PLS models (detailed in the Supplement). In both frameworks, 

permutation testing was used to assess the number of statistically significant associative effects 

based on in-sample and out-of-sample correlations between the latent variables, respectively. 

Importantly, the family structure of the HCP dataset was respected during the different data 

splits (training, validation, test/holdout sets) and permutations (64). We used iterative methods 

to solve CCA/PLS and applied mode-A deflation for standard PLS and SPLS and generalized 

deflation for standard CCA, PCA-CCA and RCCA (for details, see the Supplement). For 

simplicity, we present the results for the first associative effect in most CCA/PLS experiments 

(for a summary of all associative effects, see Table S1). Throughout the paper, we present the 

weights (canonical vector for CCA models, salience for PLS models) and latent variables 

obtained by the model. 

We used linear mixed-effects (LME) models to compare the different CCA/PLS models on the 

following measures across the outer training or test sets: i) in-sample correlation; ii) out-of-

sample correlation; iii) similarity of the model weights (measured by Pearson correlation); iv) 

variance explained by the model. In addition, we compared the number of PCs between PCA-

CCA models with fixed vs. data-driven number of PCs. We report significance at p<0.005 in 

all LME models. For further details of the LME analyses, see the Supplement. We also 

quantified the rank-similarity of the weights (measured by Spearman correlation) across the 

different CCA/PLS models in the real datasets. 
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In-sample vs. out-of-sample correlation in high-dimensional data 

Figure 3 and Table 4 display the in-sample and out-of-sample correlations for all experiments 

using all three high-dimensional datasets. On average the out-of-sample correlations are lower 

than the in-sample correlations (t(14)=4.51, p=0.0005). In real datasets, CCA/PLS models with 

dimensionality reduction or regularization provide high out-of-sample correlations in most 

cases underlining that these models generalize well to unseen data. The only notable exceptions 

are standard PLS and SPLS, which present significantly lower out-of-sample correlations in 

the HCP dataset (Figure 3B) (F(2,56)=289.30, p<0.0001). This can be attributed to the different 

properties of the HCP dataset (e.g., higher noise level and non-sparse associative effect) and 

the fact that standard PLS and SPLS are especially dominated by within-modality variance in 

this dataset (Table 4). 

In conclusion, we recommend embedding all models in a predictive framework that splits the 

data into training and test sets to assess the model’s out-of-sample generalizability. 

Standard CCA with PCA dimensionality reduction vs. regularized CCA in 

high-dimensional data 

In this section, we present the results of applying PCA-CCA and RCCA to all three high-

dimensional datasets. We focus on experiments using the predictive framework and compare 

PCA-CCA with fixed versus data-driven numbers of PCs, as well as both of these models to 

RCCA. 

Figure 4A-C and Figure 5A-C display the brain and behavioural weights and corresponding 

latent variables for the three models (note that for the HCP dataset the brain weights were 

transformed into brain connection strength increases/decreases). Figure 6 compares the brain 

and behavioural weights using rank-similarity across the models, which indicates that although 

the weights are similar across the three models, data-driven PCA-CCA and RCCA are more 
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similar to each other. The model weights and latent variables for the simulated dataset can be 

found in Figure 7A-C, which suggest that all three models recovered sufficiently the true 

weights of the generative model. Nevertheless, the non-sparse models attributed non-zero 

weights for many non-relevant variables (for details, see Table S2). 

To further investigate the characteristics of the three models, Table 4 shows the stability of 

weights and the explained variance by the models. The stability of weights varied significantly 

across brain and behaviour modalities (F(1,804)=84.51, p<0.0001) and models 

(F(2,804)=91.63, p<0.0001). Notably, the stability of RCCA weights was consistently high. 

The explained variance varied significantly only across modalities (F(1,174)=241.55, 

p<0.0001) but not models (F(2,174)=0.31, p=7303).  

Next, we examined the number of PCs in the two PCA-CCA models. We found a significant 

interaction between the effect of data modality and model on the number of PCs 

(F(1,114)=22.63, p<0.0001). Data-driven PCA-CCA yielded more brain PCs and fewer 

behavioural PCs than PCA-CCA with the fixed number of PCs (Table S3). These results 

confirm that lower ranked brain PCs might also carry information that links brain and 

behaviour and should not necessarily be discarded. Moreover, fixing the same number of PCs 

for both modalities might not be a good choice. 

Based on these results and as the optimal numbers of PCs can vary even across different brain-

behaviour associations in the same dataset, we recommend data-driven PCA-CCA over PCA-

CCA with fixed numbers of PCs. Furthermore, we found that data-driven PCA-CCA and 

RCCA gave similar results, both having a similar regularizing effect on the CCA model. 

Sparse vs. non-sparse CCA/PLS models in high-dimensional data 

In this section, we show how SPLS can find associations between subsets of features in all 

three high-dimensional datasets, and we compare the SPLS results with standard PLS and 

RCCA. 
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Figure 4C-E and Figure 5C-E display the models’ weights and latent variables (note that for 

the HCP dataset the brain weights were transformed into brain connection strength 

increases/decreases). The first associative effect found by standard PLS and SPLS is similar to 

the first found by RCCA in both the ADNI and simulated datasets, but in the HCP dataset, the 

first associative effect identified by RCCA is more similar to the second effect found by 

standard PLS and SPLS (Figure 6). This is likely because the within-modality variances in the 

HCP dataset differ substantially from the identity matrix and therefore the difference between 

the objectives of CCA and PLS models is more pronounced (see Eqs. 1-2). The brain and 

behavioural weights were similar across the three models in both real datasets, especially the 

top-ranked variables (i.e., the variables with the highest weights). Similar to RCCA, standard 

PLS and SPLS recovered sufficiently the true weights of the generative model, however the 

SPLS model assigned fewer non-zero weights to non-relevant variables (Figure 7C-E). These 

results demonstrate that, when the signal is sparse, SPLS can lead to high true positive and high 

true negative rates of weight recovery (Table S2). Table S4 shows the sparsity of the associative 

effects identified by SPLS. 

The stability of the weights differed significantly between the brain and behavioural modalities 

(F(1,804)=75.26, p<0.0001) and the three models (F(2,804)=61.77, p<0.0001) (Table 4). The 

stability of the SPLS weights was lowest in the HCP dataset, which is likely due to the model’s 

sparsity and that different sets of variables might provide similar performance. The instability 

of SPLS could be mitigated by stability selection (20) or a stability criterion during 

hyperparameter optimization (27). The explained variance varied significantly across 

modalities (F(1,174)=80.00, p<0.0001) and the three models (F(2,174)=28.60, p<0.0001). 

In summary, while RCCA is likely to yield similar or higher out-of-sample correlations than 

standard PLS and SPLS, SPLS can perform variable selection and may improve the 
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interpretability of the results, however it can also present instabilities. In practice the three 

models often provide similar weights for the top ranked variables. 

Standard vs. regularized CCA/PLS models in low-dimensional data 

To investigate the effects of regularization in all three low-dimensional datasets, we compared 

standard CCA, RCCA, standard PLS, and SPLS. The regularized models (RCCA, SPLS) were 

more stable (F(3,1075)=80.54, p<0.0001) (Table S5) and showed a trend towards higher out-

of-sample correlations (F(1,10)=3.35, p=0.0972) (Figure S1) than their non-regularized 

variants (standard CCA and PLS). The stability of standard PLS and RCCA weights were 

consistently high, the stability of SPLS varied across datasets, standard CCA was rather 

unstable (Table S5). SPLS provided sparse results, similar to the high-dimensional datasets 

(Table S4). As expected, RCCA and standard PLS explained increasingly more within-

modality variance than standard CCA. For a detailed description of these results, see the 

Supplement. Taken together, these results suggest that regularized CCA/PLS models should 

be preferred even for low-dimensional data. 

Conclusion 

This tutorial compared standard and regularized CCA and PLS models and highlighted the 

benefits of regularization. Here, we outline the key lessons. 

First, we showed that regularized CCA/PLS models give similar out-of-sample correlations in 

large datasets (with the exception of standard PLS and SPLS in the high-dimensional HCP 

dataset) when the sample size is similar or much smaller than the number of variables (i.e., the 

ratio between examples and variables is ~1-10 or ~0.1-0.01). Importantly, RCCA and SPLS 

outperformed standard CCA and PLS even when the ratio between examples and variables was 

~1-10. Second, we emphasized that it is important to use a predictive framework, since high 

in-sample correlations do not necessarily imply generalizability to unseen data. 
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Going beyond model performance, we demonstrated both in theory and practice that standard 

CCA is prone to instability (Table S3). L2-norm regularization improves stability, which comes 

at a cost of the models (RCCA, standard PLS, SPLS) being driven by within-modality 

variances. PCA-CCA with data-driven selection of PCs improves on a priori selection. Data-

driven PCA-CCA has a comparable regularizing effect to RCCA. Sparsity (i.e., L1-norm 

regularization) can facilitate the interpretability and the generalizability of the models but it 

can also introduce instability. Sparsity is most useful when the associative effect itself is sparse 

(e.g., in the ADNI and simulated datasets). Data-driven PCA-CCA, RCCA and SPLS yielded 

similar model weights and accounted for similar variances.  

We hope that this work together with recent efforts (e.g. (26,27,30,31,60)) and critical 

exchanges (e.g. (28,67,69–71)) illuminates these complex methods and facilitates their 

application to the brain and its disorders. 
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demo demonstrating how to use the toolkit for generating the SPLS results for the low-
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Figure Legends 

Figure 1. Overview of Canonical Correlation Analysis/Partial Least Squares (CCA/PLS) 

models for investigating brain-behaviour associations. CCA/PLS models maximize the 

correlation (CCA) or covariance (PLS) between latent variables extracted as weighted linear 

combinations of the brain and behavioural variables (see formulae in text). Note that the 

weights are column vectors but are represented as rows to highlight that they have the same 

dimensionality as their respective data modality. 

 

Figure 2. Descriptive and predictive (or machine learning) frameworks. (A) The descriptive 

framework fits CCA/PLS with fixed hyperparameters (i.e., the number of principal components 

or regularization parameter) on the entire sample, thus the statistical inference is based on in-

sample correlation. (B) The predictive (or machine learning) framework fits CCA/PLS on a 

training set and evaluates the model on a test set, thus the statistical inference is based on out-

of-sample correlation. The hyperparameters are usually optimized: the training set is further 

divided into a training and a validation set and the best hyperparameters are selected based on 

out-of-sample correlation in the validation set. We note that although not all models maximize 

correlation (as described in the previous section), typically all CCA/PLS models are evaluated 

based on the correlation between the latent variables (see Figure 1). 

 

Figure 3. Dot plot of in-sample and out-of-sample correlations for the first associative effects 

of all experiments in all three high-dimensional datasets. Each dot represents a model trained 

on the overall data (descriptive framework) or on 10 random subsets of the data (predictive 

framework). The horizontal jitter is for visualization purposes. (A) High-dimensional ADNI 

dataset. (B) High-dimensional HCP dataset. Note, that we display the second associative 

effect for SPLS as it is the most similar to the first associative effects identified by the other 
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models. (C) High-dimensional simulated dataset. fixed PCs, fixed number of principal 

components; data-driven, data-driven number of principal components; desc, descriptive 

framework; pred, predictive framework. 

 

Figure 4. Brain weights (left column), behavioural weights (middle column) and latent 

variables (right column) for the high-dimensional ADNI dataset. For visualization purposes, 

the model weights are normalized (divided by largest absolute value). Scatter plot between the 

brain and behavioural latent variables is overlaid by a least-squares regression line separately 

for the training and test data. (A) PCA-CCA with fixed number of principal components. (B) 

PCA-CCA with data-driven number of principal components. (C) RCCA. (D) Standard PLS. 

(E) SPLS. L, left hemisphere; R, right hemisphere; corrtraining, in-sample correlation in the 

training data, corrtest, out-of-sample correlation in the test data. 

 

Figure 5. Brain connection strengths (left column), behavioural weights (middle columns) and 

latent variables (right column) for the high-dimensional HCP dataset. For visualization 

purposes, the brain weights were transformed into brain connection strength (i.e., brain weights 

multiplied by the sign of the population mean connectivity) increases (red) and decreases 

(blue), summed across the brain nodes (i.e., ICA components where each brain vertex is 

assigned to an ICA component it is most likely to belong) and normalized (divided by largest 

absolute value). Only the top 15 positive (red) and top 15 negative (blue) behavioural weights 

are shown (secondary (e.g., age adjusted) measures that are highly redundant with those shown 

here are not displayed). The behavioural model weights are normalized (divided by largest 

absolute value). Scatter plot between the brain and behavioural latent variables is overlaid by 

a least-squares regression line separately for the training and test data. (A) PCA-CCA with 

fixed number of principal components. (B) PCA-CCA with data-driven number of principal 
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components. (C) RCCA. (D) Standard PLS. (E) SPLS. L, left hemisphere; R, right hemisphere; 

corrtraining, in-sample correlation in the training data, corrtest, out-of-sample correlation in the 

test data. 

 

Figure 6. Comparison of brain weights (left column) and behavioural weights (right column) 

across CCA/PLS models for the high-dimensional ADNI and HCP datasets obtained by the 

predictive framework. The similarity between the model weights is measured by Spearman 

correlation. The similarity between SPLS and the other models is measured only for the subset 

of variables identified by SPLS (the similarity between the two SPLS models was measured 

for the subset of variables that were present in both models). (A) High-dimensional ADNI 

dataset. (B) High-dimensional HCP dataset. Note, that the second associative effect identified 

by standard PLS (PLS-2) and SPLS (SPLS-2) is similar to the first associative effects identified 

by the other models. Standard PLS-1/2, first/second associative effect identified by PLS; SPLS-

1/2, first/second associative effect identified by SPLS; PC, principal component. 

 

Figure 7. Model weights (left column: high-dimensional modality, middle column: low-

dimensional modality) and latent variables (right column) for the high-dimensional simulated 

dataset. For comparison, the true weights (red) of the generative model are overlaid on the 

model weights (blue). For visualization purposes, the model weights are normalized (divided 

by largest value) and only a subset of 100 random weights (out of the total 20000) is displayed 

for the high dimensional modality. Scatter plot between the brain and behavioural latent 

variables is overlaid by a least-squares regression line separately for the training and test data. 

(A) PCA-CCA with fixed number of principal components. (B) PCA-CCA with data-driven 

number of principal components. (C) RCCA. (D) Standard PLS. (E) SPLS. corrtraining, in-

sample correlation in the training data; corrtest, out-of-sample correlation in the test data.  
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Tables 

Table 1. Different nomenclatures in CCA and PLS literature and summary of the 

corresponding terms. 

Model Relationship Model weights Latent variable 
Correlation between original 

variables and latent variable 

CCA 
mode/ 

association 

canonical 

vector/coefficient 

canonical 

variable/variate 
structure correlation 

PLS association salience score loading 
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Table 2. Summary of CCA/PLS models on high and low-dimensional real and simulated data. 

Model 
Analytical 

framework 

Hyperparameter 

optimization 

Model 

hyperparameter 

High-dimensional data 

PCA-CCA Descriptive None (fixed) Number of PCs 

PCA-CCA Predictive None (fixed) Number of PCs 

PCA-CCA Predictive Data-driven Number of PCs 

RCCA Predictive Data-driven 
Amount of L2-

norm regularization 

Standard PLS Predictive None None 

SPLS Predictive Data-driven 
Amount of L1-

norm regularization 

Low-dimensional data 

Standard CCA Predictive None None 

RCCA Predictive Data-driven 
Amount of L2-

norm regularization 

Standard PLS Predictive None None 

SPLS Predictive Data-driven 
Amount of L1-

norm regularization 

PC, principal component 
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Table 3. Characteristics of real and simulated data. 

Data 

HCP ADNI Simulation 

Low-dimensional  High-dimensional  Low-dimensional  High-dimensional  Low-dimensional  High-dimensional  

Subjects 
Healthy  

(N=1001) 

Healthy  

(N=1001) 

Healthy + clinical 

(N=592) 

Healthy + clinical 

(N=592) 

Not applicable 

(N=1000) 

Not applicable 

(N=1000) 

Brain 

variables 

Connectivity of 25 

ICA components 

(D=300) 

Connectivity of 200 

ICA components 

(D=19900) 

ROI-wise grey 

matter volume 

(D=120) 

Voxel-wise grey 

matter volume 

(D=168130) 

Not applicable 

(D=100) 

Not applicable 

(D=20000) 

Behavioura

l variables 

Behaviour, 

psychometrics, 

demographics 

(D=145) 

Behaviour, 

psychometrics, 

demographics 

(D=145) 

Items of MMSE 

questionnaire 

(D=31) 

Items of MMSE 

questionnaire 

(D=31) 

Not applicable 

(D=100) 

Not applicable 

(D=100) 

N, number of subjects; D, number of variables; ICA, Independent Component Analysis (i.e., 

data-driven brain parcellation); ROI, Region of Interest using the Automated Anatomical 

Labelling 2 atlas (72); MMSE, Mini-Mental State Examination (i.e., cognitive test for 

dementia) (73). 
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Table 4.  Main characteristics (mean  SEM for all values) of the first associative effects in 

the high-dimensional datasets obtained with the different CCA/PLS models using the 

predictive framework. Note that we display the second associative effect for standard PLS 

(PLS-2) and SPLS (SPLS-2) in the HCP dataset as it is the most similar to the first associative 

effects identified by the other models. 

Model 

Brain Behaviour Across-modality relationship 

Stability of 

weights1 

Explained 

variance2 

Stability of 

weights1 

Explained 

variance2 

In-sample 

correlation3 

Out-of-sample 

correlation4 

ADNI dataset 

PCA-CCA 

(fixed PCs) 

0.86 

( 0.00) 

8.47 

( 0.16) 

0.85 

( 0.01) 

14.91 

( 0.23) 

0.70 

( 0.00) 

0.55 

( 0.01) 

PCA-CCA  

(data-driven PCs) 

0.70 

( 0.01) 

5.26 

( 0.25) 

0.93 

( 0.00) 

15.73 

( 0.13) 

0.83 

( 0.01) 

0.65 

( 0.01) 

RCCA 

(L2-reg. opt.) 

0.82 

( 0.00) 

5.47 

( 0.06) 

0.94 

( 0.00) 

16.63 

( 0.26) 

0.98 

( 0.00) 

0.66 

( 0.01) 

Standard PLS 
0.96 

( 0.00) 

21.54 

( 0.16) 

0.94 

( 0.00) 

18.64 

( 0.21) 

0.44 

( 0.00) 

0.43 

( 0.01) 

SPLS 

(L1-reg. opt.) 

0.83 

( 0.02) 

14.05 

( 0.13) 

0.96 

( 0.01) 

15.86 

( 0.42) 

0.60 

( 0.00) 

0.61 

( 0.01) 

HCP dataset 

PCA-CCA 

(fixed PCs) 

0.72 

( 0.01) 

0.42 

( 0.01) 

0.78 

( 0.01) 

2.67 

( 0.10) 

0.76  

( 0.00) 

0.47  

( 0.02) 

PCA-CCA  

(data-driven PCs) 

0.56 

( 0.02) 

0.35 

( 0.03) 

0.53 

( 0.04) 

3.73 

( 0.39) 

0.76 

( 0.01) 

0.45 

( 0.03) 

RCCA 

(L2-reg. opt.) 

0.78 

( 0.01) 

0.29 

( 0.01) 

0.88 

( 0.01) 

4.39 

( 0.18) 

1.00 

( 0.00) 

0.52 

( 0.02) 

Standard PLS-2 
0.52 

( 0.04) 

0.50 

( 0.05) 

0.62 

( 0.05) 

8.07 

( 0.30) 

0.79 

( 0.02) 

0.21 

( 0.02) 

SPLS-2 

(L1-reg. opt.) 

0.25 

( 0.04) 

0.48 

( 0.07) 

0.51 

( 0.05) 

7.23 

( 0.37) 

0.64 

( 0.04) 

0.25 

( 0.03) 

Simulated dataset 

PCA-CCA 

(fixed PCs) 

0.74 

( 0.01) 

0.76 

( 0.01) 

0.90 

( 0.00) 

1.82 

( 0.01) 

0.80 

( 0.00) 

0.67 

( 0.01) 

PCA-CCA  

(data-driven PCs) 

0.96 

( 0.00) 

0.85 

( 0.00) 

0.91 

( 0.00) 

1.95 

( 0.02) 

0.73 

( 0.01) 

0.70 

( 0.01) 

RCCA 

(L2-reg. opt.) 

0.93 

( 0.00) 

0.77 

( 0.00) 

0.97 

( 0.00) 

1.99 

( 0.01) 

0.83 

( 0.01) 

0.71 

( 0.01) 
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Standard PLS 
0.94 

( 0.00) 

0.84 

( 0.00) 

0.97 

( 0.00) 

2.07 

( 0.01) 

0.81 

( 0.00) 

0.71 

( 0.01) 

SPLS 

(L1-reg. opt.) 

0.78 

( 0.03) 

0.84 

( 0.00) 

1.00 

( 0.00) 

1.94 

( 0.01) 

0.79 

( 0.01) 

0.73 

( 0.01) 

1similarity of model weights measured by Pearson correlation between each pair of training 

sets of the outer data splits; 2percent variance explained by the model relative to all within-

modality variance in the training sets of the outer data splits; 3correlation between the latent 

variables in the training sets of the outer data splits; 4correlation between the latent variables in 

the test sets of the outer data splits; opt, optimized; PC, principal component; L1-reg., L1-norm 

regularization; L2-reg., L2-norm regularization. 
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